
C
m

J
a

H
b

c

W

a

A
R
A
A

K
S
T
C
E

1

b
e
u
l
b
t
t
r
t
f
c

m
t
t
e
d
b
u

0
d

Journal of Power Sources 188 (2009) 475–482

Contents lists available at ScienceDirect

Journal of Power Sources

journa l homepage: www.e lsev ier .com/ locate / jpowsour

ontrol-oriented thermal management of solid oxide fuel cells based on a
odified Takagi–Sugeno fuzzy model

ie Yanga,b, Xi Li c,∗, Hong-Gang Moub, Li Jiana

School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology,
uazhong University of Science & Technology, Wuhan 430074, China
School of Mechanical and Electronic Information, China University of Geosciences, Wuhan 430074, China
Department of Control Science and Engineering, Key Laboratory of Education Ministry for Image Processing and Intelligent Control, Huazhong University of Science & Technology,
uhan 430074, China

r t i c l e i n f o

rticle history:
eceived 2 December 2008
ccepted 4 December 2008
vailable online 9 December 2008

a b s t r a c t

Thermal management for a solid oxide fuel cell (SOFC) is actually temperature control, due to the impor-
tance of cell temperature for the performance of an SOFC. An SOFC stack is a nonlinear and multi-variable
system which is difficult to model by traditional methods. A modified Takagi–Sugeno (T–S) fuzzy model
eywords:
olid oxide fuel cell (SOFC)
akagi–Sugeno (T–S) fuzzy model
ontrol-oriented modeling
nthalpy-balance equation

that is suitable for nonlinear systems is built to model the SOFC stack. The model parameters are initialized
by the fuzzy c-means clustering method, and learned using an off-line back-propagation algorithm. In
order to obtain the training data to identify the modified T–S model, a SOFC physical model via MAT-
LAB is established. The temperature model is the center of the physical model and is developed by
enthalpy-balance equations. It is shown that the modified T–S fuzzy model is sufficiently accurate to
follow the temperature response of the stack, and can be conveniently utilized to design temperature

control strategies.

. Introduction

The solid oxide fuel cell (SOFC), operated at temperatures
etween 600 and 1000 ◦C, is a promising technology for sustainable
nergy conversion, having a wide range of possible applications. Its
nique advantages are high efficiency, fuel flexibility, and low pol-

utant emissions, while combined heat and power generation can
e realized with the waste heat produced in SOFCs [1]. However,
he high operating temperature also brings serious challenges to
he technology, such as material selection, thermal management,
eliability and durability. Thermal management associated with
emperature and its distribution is a critical factor for the cell per-
ormance and stack behavior, affecting cell integrity, cell voltage,
urrent density distribution and power output [2,3].

An SOFC is a nonlinear multi-variable system which is difficult to
odel by traditional methodologies. In order to effectively control

he cell temperature in terms of control strategies, it is necessary
o develop model-based control methods. In recent decades, math-

matical models have been established, emphasizing the accurate
escription of cell internal mechanisms, such as mass- and energy-
alances and electrochemical kinetics [3–8]. These models are
seful for cell design, analysis and optimization. However, they
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are complicated for use as model-based control methods [9], and
in some cases they are impracticable. In addition, researchers
have tried to establish models via data-driven approaches so as
to obtain valid control strategies [10,11]. To control the complex
SOFC system, simpler data-driven models based on system identifi-
cation methodology are useful and convenient. Arriagada presented
an artificial neural network to identify the SOFC model, which
was trained by experimental data for prediction of various SOFC
operational parameters. This method can accomplish performance
analysis and prediction, but it is not perfect for the control purpose,
and the experimental data may not sufficiently reflect all the char-
acteristics of an SOFC [12]. Jurado [13,14] proposed a Hammerstein
model for identification and predictive control. This model is specif-
ically suitable for nonlinear systems where the nonlinear block is
static and followed by a linear system, and can only be applied for
small signal and transient stability studies. Huo et al. [15] and Kang
et al. [16] used the least squares support vector machine to establish
a data-driven model for an SOFC, achieved a solution by solving a set
of linear equations. This model, based on mass- and energy-balance
equations, describes the temperature dynamics and predicts stack
voltage.
Fuzzy modeling and identification based on measured data
are effective tools for the approximation of an uncertain non-
linear system [17]. Among various fuzzy modeling methods, the
Takagi–Sugeno (T–S) fuzzy model has attracted most attention
[18] due to it having fewer rules than other models. Each rule

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:lixi@hust.edu.cn
dx.doi.org/10.1016/j.jpowsour.2008.12.012
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Nomenclature

A cell active area (m2)
Cp specific heat capacity of gas species (J mol−1 K−1)
Ċp area specific heat capacity (J K−1 m−2)
F Faraday’s constant (96,485 C mol−1)
h specific enthalpy (J mol−1)
H enthalpy (J)
Ḣ enthalpy flow (W)
i current density (A m−2)
i0 exchange current density (A m−2)
ir reaction current density (A m−2)
I current (A)
m mass (kg)
N molar flux (mol m−2 s−1)
n number of moles (mol)
ṅ molar flow (mol s−1)
ni molar number of species i (mol)
ṅc hydrogen combustion molar flow (mol s−1)
P pressure (bar)
R universal gas constant (8.314 J mol−2 K−2)
t time (s)
T temperature (K) also period (s)
T0 ambient temperature (K)
U voltage (V)
V volume (m2)
x input vector
xi molar fraction of species
y output vector

Greek letters
˛ symmetry factor learning factor
ˇ a T–S factor
� overpotential (V)
� stoichiometric coefficient

Subscripts
i gas species
r reaction

Superscripts
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Inserting Eq. (4) into Eq. (1) and assuming constant pressure, the
in fuel cell inlet
out fuel cell outlet

onsequence with a linear function can be described by
nput–output mapping in a wide range and the fuzzy implication
sed in the model is relatively simple [19]. The T–S fuzzy model has
he capability to approximate a large class of static and dynamic
onlinear systems [20,21], and has been successfully proved
o be applicable in model identifications and control strategies
22–24]. In most previous applications, single-input/single-output
r multi-input/single-output was considered [25–27]. Yang et al.
28] described a dynamic T–S fuzzy model of a molten carbonate
uel cell, consisting of voltage and temperature submodels, but the
emperature submodel can only be valid within a relatively narrow
emperature range. The modeling of SOFCs using the T–S model has
ot been reported so far.

In this study, a control-oriented thermal management of an
OFC stack using a modified T–S fuzzy model was conducted with

n identification method. The training data were extracted from
n SOFC stack physical model that was constructed with MATLAB.
he physical model built by mass- and energy-balance equations,
nd enthalpy-balance equations can serve as a real SOFC stack. The
emperature subsystem based on enthalpy-balance equations can
urces 188 (2009) 475–482

realize temperature control strategy. This T–S fuzzy model consists
of if-then rules with fuzzy antecedents and mathematical func-
tions in the consequent part. Unlike the original T–S model, SOFC
input and output variable spaces were divided into many subspaces
according to the principle of the fuzzy c-means (FCM) clustering
method [29]. The model parameters were learned by using the
back-propagation (BP) learning algorithm [30]. The task of system
identification was to determine both the nonlinear parameters of
antecedents and the linear parameters of the rule consequence. The
satisfactory results show that the modified T–S fuzzy model can
achieve the temperature control strategy.

2. SOFC physical model

In this SOFC physical model, some simplifications and assump-
tions are made, since high accuracy is not necessary for a physical
model that serves for a subsequent control strategy. Any devia-
tions between the model and the real fuel cell can be managed
by a feedback loop in the control system [31]. The proposed SOFC
stack physical model has the following assumptions:

(1) Stack is fed with hydrogen and air; the fuel processor dynamics
are not included.

(2) A uniform gas distribution among the cells is assumed, since
there is a small deviation of the gas distribution.

(3) There is no heat transfer among the cells. Each cell has the same
temperature and current density.

(4) There is no heat exchange between the stack and the ambient
environment.

(5) The channels that transport gases along the electrodes have a
fixed volume and small dimension, so there is a constant pres-
sure in the stack.

2.1. Mass-balance model

For a generic species i, the dynamic mole-balance is:

dni

dt
= ṅinxin

i − ṅoutxi + vi
irA

F
(1)

The stoichiometric factor vi indicates how many moles of the
species are produced or consumed for each mole of electrons
transferred. The anodic and cathodic reactions in the SOFC are,
respectively:

H2 + O2− → H2O + 2e−

(1/2)O2 + 2e− → O2− (2)

then �O2 = −1/2, �H2 = −1, �H2O = 1, �N2 = 0.
According to the Butler–Volmer equation [32]:

ir = i0(e˛(nF/RT)� − e−(1−˛)(nF/RT)�) (3)

When pressure is constant, the total outlet molar flow depends
only on the transient reaction rate and temperature and can be
calculated using the following relation:

ṅout = ṅin +
∑

i

�i
irA

F
+ pV

RT2

dT

dt
(4)

The term
∑

i

�i(irA/F) represents the algebraic sum of gas reac-

tion molar flow, and (pV/RT2)(dT/dt) reflects thermal expansion.
molar-balance becomes:

pV

RT

dxi

dt
= ṅin(xin

i − xi) + irA

F
(�i − xi

∑
j

�j) (5)
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.2. Energy-balance model

Energy-balance is a very important aspect for SOFCs operated
t high temperature. Here only the enthalpy-balance is considered.
he main sources and sinks of heat for an SOFC are entering and

xiting flow, the heat generated by cell reactions, and the heat lost
o the environment. An enthalpy-balance equation yields:

dH

dt
= Ḣin − Ḣout − irVA − Ḣloss (6)

Fig. 1. MATLAB diagram of air and H2 flowing into th
urces 188 (2009) 475–482 477

The term irVA represents the electrical power generated. The rela-
tionship between enthalpy and temperature can be expressed as

dH = Aċp
dT

(7)

dt dt

The entering enthalpy flow also contains the heat generated by
the combustion of hydrogen, hence the total entering enthalpy flow
is equal to the enthalpy associated with the ambient air plus the

e Stack Subsystem via the supply subsystem.



4 wer So

e

H

g
a
fi
d

e

H

78 J. Yang et al. / Journal of Po

ntering hydrogen flow:

˙ in = ṅairhair(T0) + (ṅH2 + ṅc
H2

)hH2 (TH2 ) (8)

In reality, TH2 may be significantly different from T0, as hydro-
en from various sources may undergo different processes, such
s expansion, evaporation or dissociation; however, for simpli-
cation TH2 = T0 is assumed without causing any meaningful
eviation.

The total outlet molar flow will be larger than or equal to the

ntering one and the expression of this is:

˙ out =
∑

i

ṅout
i hi(T) (9)

Fig. 2. MATLAB diagram showing air and H2 flow from the ca
urces 188 (2009) 475–482

and the outlet molar flow for species i, ṅout
i

can also be expressed
as

ṅout
i = ṅin

i + �i

(
ṅc

H2
+ irA

2F

)
+ xi

pV

RT2

dT

dt
(10)

where ṅin
i

is the entering molar flow, �i(ṅc
H2

+ (irA/2F)) is the molar
flow associated with hydrogen reaction and combustion, and the
term xi (pV/RT2)(dT/dt) is related to gas thermal expansion.
The heat loss to the environment, Ḣloss, is generally a benefi-
cial factor, as a fuel cell stack prefers heat to be removed from
it. However, its actual expression depends on the stack materials
and layout. For the sake of simplicity, it is assumed that Ḣloss = 0
[31].

manifold and an manifold into the temperature block.



J. Yang et al. / Journal of Power Sources 188 (2009) 475–482 479

temp

2

g
t
i
t

A

T
r

s
i
A
w

2

fl
a
o
i
t
t
a
a
a
c
t
l

c
a
m
r

Fig. 3. The structure of the

.3. Temperature control dynamic model

The objective of temperature control is to keep the stack at a
iven temperature by manipulating the air flow. Having assumed
hat temperature is uniform in a stack, Eq. (6) determines its dynam-
cs. According to simultaneous Eqs. (6) and (7), it can be obtained
hat:

ċp
dT

dt
= Ḣin − Ḣout − irVA

= (Ḣin(T) − Ḣout(T)) − (Ḣin(T) − Ḣin(T0)) − irVA (11)

he terms (Ḣin(T) − Ḣout(T)) and (Ḣin(T) − Ḣin(T0)), respectively,
epresent the reaction heat and the sensible heat.

In Eq. (11) it assumed that the specific heat capacity for all the
pecies is approximately the same on condition that the pressure
s constant. This is adequate for the control-oriented modeling.
ccording to Eq. (11), the temperature control model can be built
ith MATLAB.

.4. Temperature control model realization in MATLAB

The stack temperature is influenced essentially by the entering
ows and the reaction rate, and the reaction rate is determined
ccording to the requirements of the electric utility. Therefore, the
nly remaining way to influence the stack’s temperature is chang-
ng the entering flows. This is the standard operating mode, where
he entering flows are manipulated to approach the stack reference
emperature. This physical MATLAB model has two input variables,
ir flow and H2 flow, and one output variable, T. Once more vari-
bles are selected from the physical model and more training data
re obtained for the modified T–S model, the multi-input (load
urrent, air flow hydrogen flow rate, etc.) and multi-output (stack
emperature, stack voltage stack power, etc.) system can be estab-
ished.
A virtual 3.5 kW SOFC stack is used in the simulation. The stack
onsists of 60 cells with anode and cathode gases in cross-flow
nd cell active area 0.01 m2. As shown in Figs. 1–3, the physical
odel replaces the real SOFC stack to generate the simulation data

equired for the modified T–S fuzzy model. In Fig. 1, the input vari-
erature model subsystem.

ables are air flow and H2 flow. Air and H2, respectively, enter into the
Air Supply Subsystem block and the Fuel Supply Subsystem block.
The internal structure of the Stack Subsystem block is shown in
Fig. 2. The Stack Subsystem block includes a cathode flow block,
anode flow block, stack block and temperature block. Eq. (11) is built
in the temperature block shown in Fig. 3; the stack temperature
(Temp stack) can be obtained according to Eq. (11).

The enthalpy expressions can be acquired from the published
literature [33] and the relationship between enthalpy and tem-
perature for different gases is reflected in these expressions. The
Enthalpy out block and Enthalpy in block can be expressed as fol-
lows (w expresses molar flow):

• For Enthalpy in block:

h in = w air × h air + w H2 × h H2 + w V × h V (12)

where

h air = −1.0947e4 + 32.50 × T air

h H2 = −0.9959e4 + 30.73 × T fuel

h V = −25.790e4 + 42.47 × T fuel

(13)

w H2 = w fuel × fi moelra × 2.016
(fi moelra × 2.016 + 18.02)

w V = w fuel − w H2

(14)

• For the Enthalpy out block:

h out = w O2 × h O2 + w N2 × h N2 + w H2 × h H2

+w V × h V (15)

and

h N2 = −1.0590e4 + 31.40 × T
h H2 = −0.9959e4 + 30.73 × T

h O2 = −1.2290e4 + 35.12 × T

h V = −25.790e4 + 42.47 × T

(16)
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Fig. 4. The temperature response of the SOFC stack physical model.

Based on the physical model, it can be established that the load
ignal change can vary the SOFC stack temperature. In addition, the
tack temperature also fluctuates with the input variables (air flow
nd H2 flow). As shown in Fig. 4, the temperature of the SOFC stack
uctuates between 815 and 925 K with an ascending trend and the
emperature curve is fluctuating rather than smooth. Sharp fluc-
uations of stack temperature present difficulties for temperature
ontrol, and therefore a data-driven model, instead of a physical
odel, is used to carry out the control strategy. For this purpose,
modified T–S model is applied with data provided by the above
hysical model.

. A modified T–S fuzzy model of the structure and
lgorithm

.1. The structure of T–S fuzzy model

An SOFC system can be considered as a multi-input/multi-
utput system that can be divided into q (number of input variables)
ulti-input and single-output (MISO) systems, and each MISO

ystem can be fitted by a fuzzy T–S model independently. The
iscrete-time system can be modeled by the collection of c fuzzy
ules. It has been theoretically proved that the T–S model has the
apability of closely approximating a real system by increasing the
umber of fuzzy rules; therefore, the model is highly precise.

The modified T–S model presented here is a fuzzy logic system
hich is jointly composed of the fuzzy rule base and weight mean
efuzzier.

The fuzzy rule is in the form of “if. . .then. . .”. The ith rule of the
th output ŷl,i(k + 1) is given by

Rl,i : If x(k) is Al
i
, then

ŷl,i(k + 1) = pl
i,0 + pl

i,1xk1 + · · · + pl
i,n

xkn (i = 1, · · ·, c)
(17)

here c is the number of rules, Al
i
=

{
Al

i,1, · · ·, Al
i,n

}
is the set

f membership functions associated with the ith rule, and pl
i
=

pl
i,0, pl

i,1, · · ·, pl
i,n

]
is the parameter vector of the ith submodel. It is

efined that:

uj (k)
}nuj

0
=

[
uj (k) , · · ·, uj (k − nuj + 1)

]
(j = 1, · · ·, nj)

yl(k)}nyl
0 = [yl(k), · · ·, yl(k − nyl + 1)] (l = 1, · · ·, q)
uj and nyl are the order of the input variable uj and output variable
l, respectively, and each MISO subsystem can be denoted as

l(k + 1) = f [x(k)] l = 1, · · ·, q (18)
urces 188 (2009) 475–482

where x(k) =
{

[u1(k)]nu1
0 , · · ·,

[
unj

]nuj

0
, [y1(k)]ny1

0 , · · ·,
[
yq(k)

]nyq

0

}
=

[xk1, · · ·, xkn] is the regression data vector consisting of
input–output data at the kth instant and before.

The antecedent part of “If. . .” in the form of the fuzzy set is
equal to the fuzzy partition of data space of the SOFC input–output
variables, and the consequent part of “then. . .” represented by a lin-
ear functional relation is a linear composition of the input–output
variables. The identification is to find the fuzzy SOFC model with
reasonable complexity to minimize the error between the fuzzy
SOFC model output and the real SOFC stack output. In this model,
what is to be partitioned is the whole space spanned by regression
data vectors, but not the single variable space presented by Takagi
and Sugeno [18].

Membership function of the fuzzy set Aj can be defined as the
product of Gaussian functions:

�Ai(xm) =
n∏

p=1

{
exp

[
−1

2

(
xmp − �ip

�ip

)2
]}

(19)

where xm is the mth regression data vector, p(=1, . . ., n) is the dimen-
sion of data vector, �i=[�i1, �i2, . . ., �in] and �i=[�i1, �i2, . . ., �in]
are subsequent identification parameters of the membership func-
tions. According to the above simultaneous equations, the fuzzy
reasoning output can be expressed as

yl(k + 1) =
∑c

i=1wiŷl,i(k + 1)∑c
i=1wi

=
∑c

i=1wi(pl
i,0 + pl

i,1xk1 + · · · + pl
i,n

xkn)∑c
i=1wi

=
∑c

i=1wi([ 1 xm ] × pT
i
)∑c

i=1wi

= �1

�2
(20)

with

wi =
n∏

p=1

{
exp

[
−1

2

(
xmp − �jp

�jp

)2
]}

(21)

where [pl
1,0· · ·pl

c,0· · ·pl
1,1· · ·pl

c,1· · ·pl
1,n· · ·pl

c,n]
T

is the subsequent
identification parameter vectors of the consequent part, and wi is
the match degree of mth data vector corresponding to ith rules.

3.2. Model parameters of BP learning algorithm

The above fuzzy logic system can be represented as a feed-
forward network in Fig. 5, whose weight coefficients have clear
physical meanings and can be learned by back-propagation of the
output predictive error [23,30]. A parameter set of the fuzzy system
that minimizes the output predictive error can be found through a
collection of training data produced by the physical SOFC model:

E =
∑q

m=1(yl,m − ŷl,m)2

2
(22)

where yl,m is the SOFC physical model output of mth data vector, and
ŷl,m is predictive output of fuzzy inference system. Calculating the
gradient of predictive output error E through Eqs. (21) and (22) can
be used to obtain the learning algorithm of fuzzy inference system
parameter vectors �i, �i and pi:
�i,p(k + 1) = �i,p(k) − ˛
∂�i,p

(k) (23)

�i,p(k + 1) = �i,p(k) − ˛
∂E

∂�i,p
(k) (24)
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Table 1
Parameters of the SOFC stack used in the physical model.

Item Value

Cell number 60
Cell active area (m2) 0.01
The heat capacity per cell area (J K−1 m−2) 7000
The arm power (kW) 3.5
Anode total volume (m3) 0.005
Cathode total volume (m3) 0.001
Gas inlet flow constant 0.3629 × 10−5

Anode gas outlet flow constant 0.0544 × 10−5

Cathode gas outlet flow constant 0.2118 × 10−5

Air heat capacity (J kg−1 K−1) 1004
Air density (kg m−3) 1.23
Oxygen density (kg m−3) 1.36
Nitrogen density (kg m−3) 1.19
Air gas constant (kg m−3) 286.9
Oxygen gas constant (kg m−3) 259.8
Nitrogen gas constant (kg m−3) 296.8
Hydrogen gas constant (kg m−3) 4.1243 × 103

Oxygen molar mass (kg mol−1) 0.032
Nitrogen molar mass (kg mol−1) 0.028

−1 −5
Fig. 5. Feed-forward network form of fuzzy logic system.

l
i,0(k + 1) = pl

i,0(k) − ˛
∂E

∂pl
i,0

(k) (25)

l
i,p(k + 1) = pl

i,p(k) − ˛
∂E

∂pl
i,p

(k) (26)

here ˛ is the learning factor, and p = 1, . . ., n.

.3. The initialization of antecedent parameters

Since the BP algorithm tends to fall into localized optimization,
he initialization of the design parameter is very important. In this
tudy, the FCM clustering method [29] is employed to initialize the
ntecedent parameter vectors �i and �i:

i = ci (27)

i = ˇ ×
∑q

i=1(Uim ×
∥∥xm − ci

∥∥)∑q
i=1Uim

for i = 1, · · ·, c (28)

here ˇ(=3) is a given factor in advance, the first set of c data vectors
re obtained from the training data set as the initialization param-
ters. The FCM initialization method is more likely to avoid local
ptimization of the BP algorithm.

.4. On-line adjustment of consequent parameters

For a complex system that operates over a wide range of con-
itions, it is difficult to adopt an off-line model to accurately
pproximate the dynamic characteristics of the system. In the pro-
osed algorithm, if the predictive precision of the model cannot
atisfy the need for real-time control, the consequent parameters
l
i
should be rectified on-line.
Equation (20) can also be expressed as

ˆ l(k + 1) =
∑c

i=1wi [x (k)] ŷl,i (k + 1)∑c

i=1wi[x(k)]

=
c∑

i=1

�i(k) × ŷl,i(k + 1) = ˚(k) × 	 (29)
Hydrogen molar mass (kg mol ) 2.016 × 10
Faraday’s constant 96485.34
Universal gas constant (kg m−3) 8.31451

with �i(k) = wi[x(k)]∑c

i=1
wi[x(k)]

˚(k) = [�1, �2, · · ·, �c, �1xk, �2xk, · · ·, �cxk, · · ·, �1xkn, · · ·, �cxk]

	 =
[
pl

1,0· · ·pl
c,0 pl

1,1· · ·pl
c,1· · ·pl

1,n· · ·pl
c,n

]T

where wi[x(k)] is the match degree of mth data vector
x(k) with respect to Ai

l . Then the consequent parameters[
pl

1,0· · ·pl
c,0· · ·pl

1,1· · ·pl
c,1· · ·pl

1,n· · ·pl
c,n

]T
are identified by the least

squares method.
The modified algorithms significantly improve the accuracy of

the identification and ensure a more accurate model to fit the
dynamic characteristics of the SOFC stack. It is not necessary to
consider the SOFC materials, structures and other performance
parameters in the mechanism model and determination of these
factors is more complicated. Clearly, the modified fuzzy model is
simple and convenient to build, as long as the input–output test data
are available. A multi-variable model can be readily established by
the fuzzy modeling methods. In addition, after fuzzy identification,
the fuzzy model can facilitate the application of an SOFC automatic
control system.

4. Results

4.1. Preparation of training data

In this experiment, the SOFC system is regarded as a two-input
and single-output system. The detailed parameters used for the
physical stack model are given in Table 1. From the physical SOFC
model testing experiments, training data of different air and hydro-
gen flow speeds corresponding to the SOFC stack temperature can
be obtained, which forms a data group that is divided further into
a training group and a testing group. The training group is used
to identify the modified T–S fuzzy model; and the testing group is
used to validate the modified T–S fuzzy model.

4.2. Identification result of modified T–S fuzzy model
The training data are classified into 12 groups using the FCM
clustering method, and the results of the FCM clustering method are
employed to initialize the antecedent parameters. In the BP learning
algorithm, the exponent m (m = 2) is a real number, c (c = 12) is the
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Fig. 6. Comparison of temperature responses of SOFC stack generated by the physical
model and the modified T–S model.
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ig. 7. Early stage magnification of the temperature responses shown in Fig. 6.

umber of fuzzy rules, e (e = 0.001) is the stop criterion, the learning
actor is 0.01, and the learning number is 100; as a consequence, an
ff-line T–S fuzzy SOFC model, which consists of 12 fuzzy rules,
s obtained. The comparison of stack temperature dynamic curves
etween the data-driven model (modified T–S fuzzy model) and the

hysical model (simulation stack model) is represented in Fig. 6,
ith the early stage shown in Fig. 7. The temperature deviation

urve is shown in Fig. 8. Less than ±0.6 K is achieved, suggesting
hat the modified T–S fuzzy model can approximate the dynamic

ig. 8. The temperature deviation between results from the SOFC stack physical
odel and the modified T–S model.
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behavior of the physical SOFC model with high accuracy and provide
a satisfactory control strategy.

5. Conclusions

In order to facilitate valid control-oriented modeling, a nonlin-
ear modeling study of an SOFC stack using the modified T–S fuzzy
model was carried out. It has been shown that the physical model,
which is constructed from mass-balance and energy-balance equa-
tions with MATLAB, can be used to describe the SOFC stack and
produce training data without conducting experiments. The tem-
perature submodel is the center of the physical model and is
developed by enthalpy-balance equations. Based on the data-driven
approach, the modified T–S fuzzy model is more attractive because
it avoids the use of complicated differential equations to build
the SOFC model and quickly identifies the characteristics of the
input–output relationship. The simulation results show that the
modified T–S model yields a high accuracy over a relatively wide
operating temperature range. If sufficient data from a real system
are obtained, an optimized control-oriented SOFC stack model can
be built automatically in the same way.
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21] M. Setnes, R. Babuška, H.B. Verbruggen, IEEE Trans. Syst. Man Cybern. Part C:

Appl. Rev. 28 (1) (1998) 165–169.
22] M.G. Na, I.J. Hwang, Y.J. Lee, IEEE Trans. Nucl. Sci. 53 (3) (2006) 1504–1514.
23] B. Liu, Z. Jiang, K.L. Fang, The Second International Conference on Machine

Learning and Cybernetics (ICMLC 2003) [C] Xian:[s.n.], (2003) 2506–2511.
24] N. Li, S.Y. Li, Y.G. Xi, Acta Autom. Sinica 29 (4) (2003) 516–523.
25] I.M. Kouatli, J. Intell. Manuf. 5 (6) (1994) 365–387.
26] Y.Z. Lu, M. He, C.W. Xu, IEEE Trans. Control Syst. Technol. 5 (1) (1997) 2–12.
27] A. Gegov, A. Nabout, Proceedings of the IEEE American Control Conference, vol.

5, 1995, pp. 3229–3233.
28] F. Yang, X.-J. Zhu, G.-Y. Cao, J. Power Sources 166 (2007) 354–361.

29] G.E. Tsekouras, Adv. Eng. Softw. 36 (5) (2005) 287–300.
30] H.M. Lee, C.M. Chen, T.C. Huang, Neurocomputing 41 (1–4) (2001) 125–143.
31] F. Zenith, PhD Thesis, Norwegian University of Science and Technology, Trond-

heim, Norwegian, 2007.
32] J. Newman, K.E. Thomas-Alyea, Electrochemical Systems, third ed., John Wiley

& Sons, Chichester, 2004, pp. 212–213.
33] Y.T. Qi, B. Huang, J.L. Luo, Chem. Eng. Sci. 61 (2006) 6057–6076.


	Control-oriented thermal management of solid oxide fuel cells based on a modified Takagi-Sugeno fuzzy model
	Introduction
	SOFC physical model
	Mass-balance model
	Energy-balance model
	Temperature control dynamic model
	Temperature control model realization in MATLAB

	A modified T-S fuzzy model of the structure and algorithm
	The structure of T-S fuzzy model
	Model parameters of BP learning algorithm
	The initialization of antecedent parameters
	On-line adjustment of consequent parameters

	Results
	Preparation of training data
	Identification result of modified T-S fuzzy model

	Conclusions
	Acknowledgements
	References


